Hepatitis C Treatment for Primary Care Providers

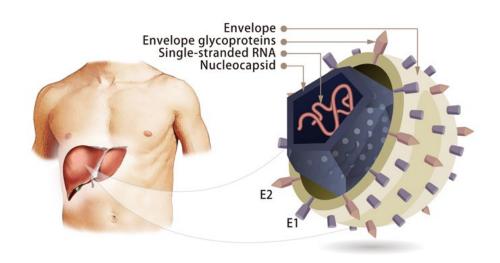
Aaron Skiles, DNP, CFNP
UNM Sandoval Regional Medical Center
UNM HCV Elimination Project
Project ECHO

Objectives:

Review risks for Hepatitis C transmission and identify appropriate populations for screening and treatment.

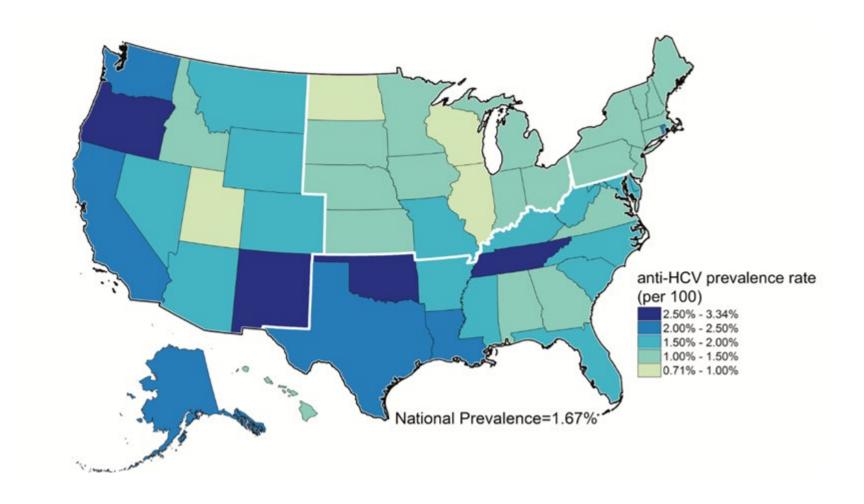
Describe risks of untreated Hepatitis C and benefits of treatment.

Empower audience participants to identify their role in HCV elimination strategies.


No financial disclosures

Hepatitis C

- Liver infection caused by the Hepatitis C Virus (HCV)
- Blood borne
- Acute vs. Chronic infection
- Initially, chronic infection is usually asymptomatic.
- No vaccine
- No pre-exposure or post exposure prophylaxis



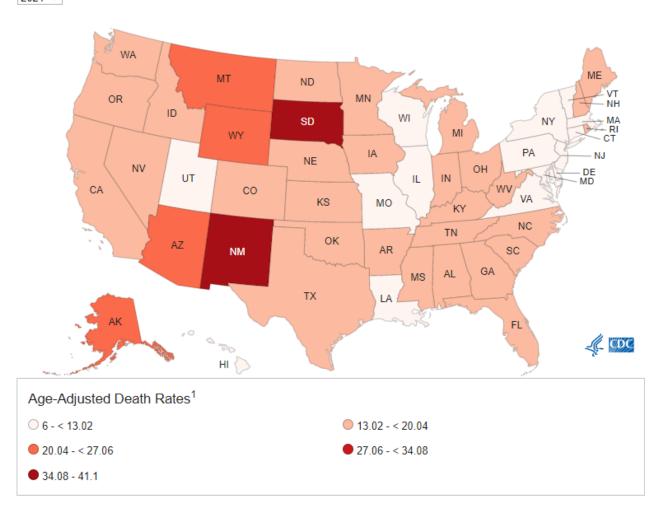
Hepatitis C (HCV) Pandemic

- 1% of world population chronically infected (NM & UNM populations higher)
- 71 Million people
- Leading cause of liver-related deaths worldwide
 - Approx. 670,000 annually
- 20% aware of their infection ²

- 1. (Krekulova et al., 2021)
- 2. (Applegate et al., 2018)

U.S. HCV Antibody Prevalence

(Rosenberg et al., 2017)

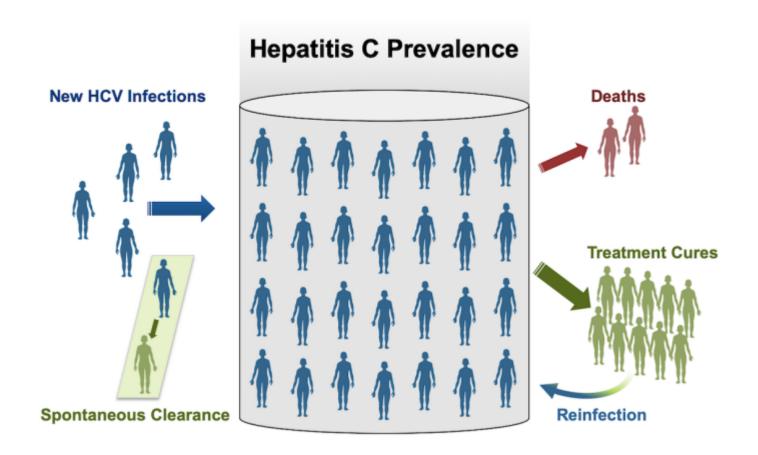


Chronic Liver Disease/Cirrhosis Mortality by State

Print

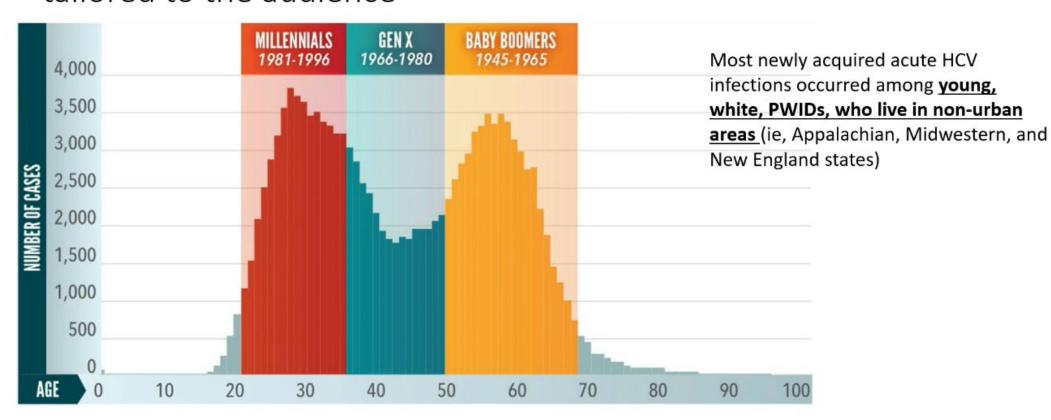
Make a selection from the filters to change the visualization information.

Year 2021 ✔


Leading Causes of Death

- 1. Heart Disease
- Cancer
- 3. COVID-19
- 4. Accidents
- 5. Chronic Lower Respiratory Diseases
- 6. Stroke
- 7. Chronic Liver Disease/Cirrhosis
- 8. Diabetes
- 9. Alzheimer's Disease
- 10. Suicide

Figure 11 Dynamics of HCV Prevalence in the United States


This illustration shows the dynamics of HCV prevalence in the United States (persons living with chronic HCV infection) are impacted by multiple factors, including number of new infections, spontaneous resolution of new infections, deaths, treatment-related cure, and reinfection.

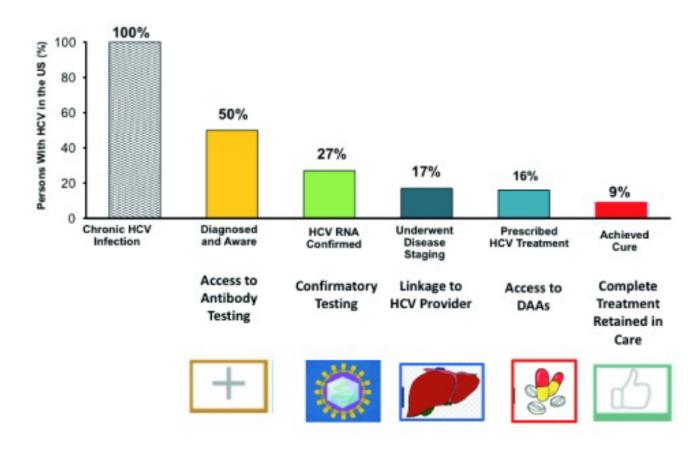
Source: Illustration by David H. Spach, MD

Patients have also changed:

HCV is now bimodal and strategies to achieve cure must be tailored to the audience

Centers for Disease Control and Prevention. NCHHSTP Newsroom. https://www.cdc.gov/nchhstp/newsroom/2020/hepatitis-c-impacting-multiple-generations.html#Graphics. Accessed October 12, 2020.

Ryerson AB, et al. MMWR Morb Mortal Wkly Rep. 2020;69:399-404.


World Health Organization Elimination Goals

- Reduction in new infections by 90% by 2030, compared with the 2015 baseline
- 65% reduction in mortality
- Increase in the proportion of diagnosed people with HCV infection up to 90%

HCV Care Cascade

Universal Screening

Final Recommendation Statement

Hepatitis C Virus Infection in Adolescents and Adults: Screening

Recommendations made by the USPSTF are independent of the U.S. government. They should not be construed as an official position of the Agency for Healthcare Research and Quality or the U.S. Department of Health and Human Services.

Recommendation Summary

Population	Recommendation	Grade (What's This?)
Adults aged 18 to 79 years	The USPSTF recommends screening for hepatitis C virus (HCV) infection in adults aged 18 to 79 years.	В

To read the recommendation statement in JAMA, select here.

To read the evidence summary in JAMA, select here.

See the Clinician Summary for a more detailed summary of the recommendation for clinicians.

Return to Table of Contents A

Table of Contents

Importance

Assessment of Magnitude of Net Benefit

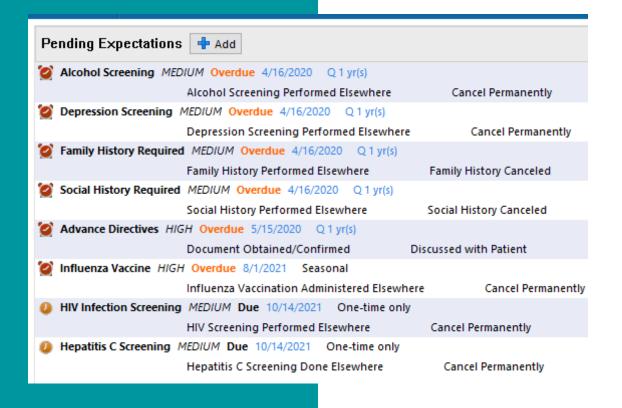
Practice Considerations

Update of Previous USPSTF Recommendation

Supporting Evidence

Recommendations of Others

Members of the U.S. Preventive Services Task Force


Copyright and Source Information

References

Routine Screening

Decreases stigma
Integrates into routine care
Insurance coverage

Risk-based screening

- History of injection drug use
- People living with HIV
- Maintenance hemodialysis
- Persistently abnormal ALT levels
- Any person who requests HCV testing
- HIV Pre-exposure prophylaxis (PrEP) therapy monitoring
- Exposure—such as needlestick injury

What is Reflex Testing for Hep C?

"When antibody testing is reactive or equivocal, a reflex HCV quantitative RNA viral load test is performed."

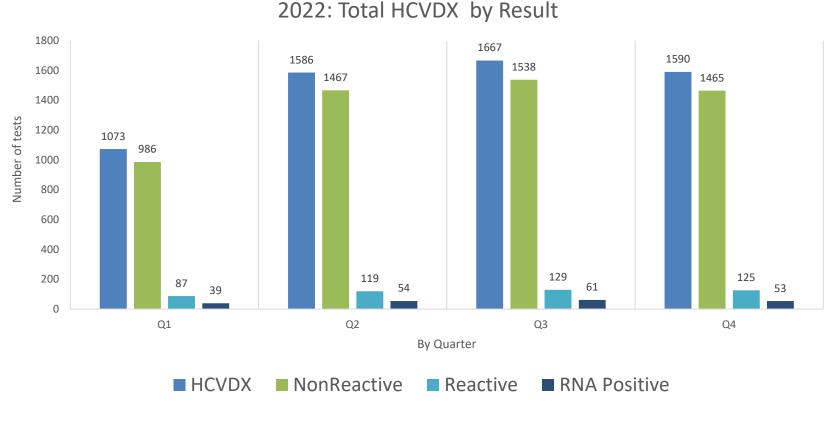
- Confirming HCV is 2-step process
- Spontaneous clearance and/or prior treatment

HCV DX Examples

Hepatitis Virus	
Hepatitis C Antibody	Nonreactive: (No
Hepatitis C Signal/Cutoff Ratio	* 0.04
Hepatitis C Realtime PCR	Not Indicated
Hepatitis C PCR Log	Not Indicated
HCV Interpretation	No HCV antibod

Hepatitis Virus	
Hepatitis C Antibody	(A) Reactive: (HCV antibodies detected. R
Hepatitis C Signal/Cutoff Ratio	* (H) 2.67
Hepatitis C Realtime PCR	Hepatitis C Virus RNA not detected.
Hepatitis C PCR Log	Not Required
HCV Interpretation	(A) No laboratory evidence of current HC

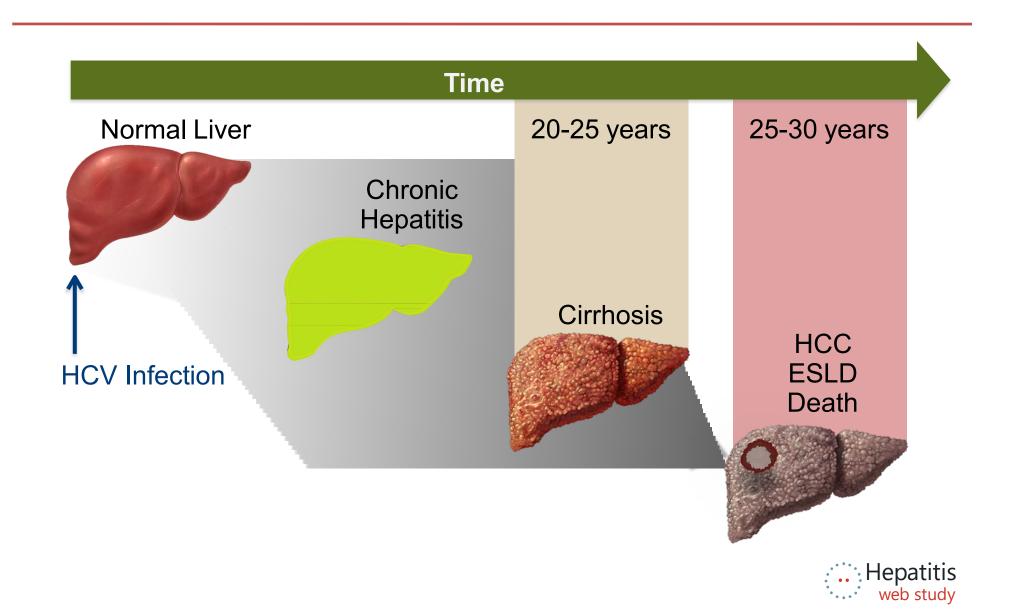
Hepatitis Virus		
Hepatitis A IGM Antibody	Nonreactive	
Hepatitis A total Antibody (IGG/IGM)	(A) Reactive	
Hepatitis B Surface Antigen	Nonreactive [2]	
Hepatitis B Surface Antibody Titer	* (H) 13	
Hepatitis B Core IGG Antibody	Nonreactive	
Hepatitis B Core IGM Antibody	Nonreactive	
Hepatitis C Antibody	(A) Reactive [2]	
Hepatitis C Signal/Cutoff Ratio	* (H) > 11.00; * (H) > 11.00	
Hepatitis C Realtime PCR	2,270,000	
Hepatitis C PCR Log	6.4	
HCV Interpretation	(A) HCV RNA detected. Laboratory ev	


No infection.

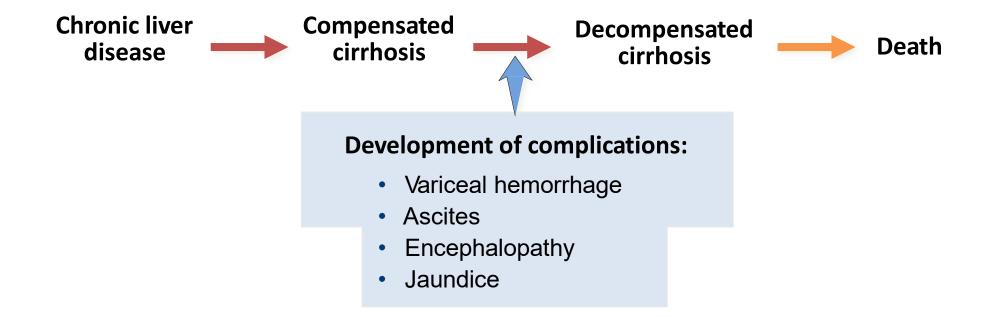
No treatment/referral indicated.

Active viremia, Treatment/referral indicated.

HCVDX Usage @ UNMHS


- 7070 Total HCVDX Tests
 - 6431 Nonreactive
 - 629 Reactive
 - 8.9% Ab Reactivity
- 3.86% rate of confirmed viremia in all patients screened
- 43.4% rate of confirmed viremia from AB reactive

Data from UNM Clinical Practice Excellence, Analysis by Hep C Project team



Hepatitis C: Progression of Disease

Natural History of Chronic Liver Disease

Extrahepatic Manifestations

- Glomerulonephritis
- Essential mixed cryoglobulinemia
- Porphyria cutanea tarda
- Non-Hodgkin's lymphoma
- Diabetes Mellitus²
 - meta-analysis of 34 studies estimated that the risk was increased by almost 70 percent in HCV-infected patients compared with non-infected controls (OR 1.7)

- 1. (CDC, 2021)
- 2. (White et al., 2008)

Porphyria cutanea tarda

Photos (A. Skiles)

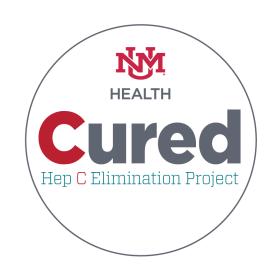
Perinatal Transmission

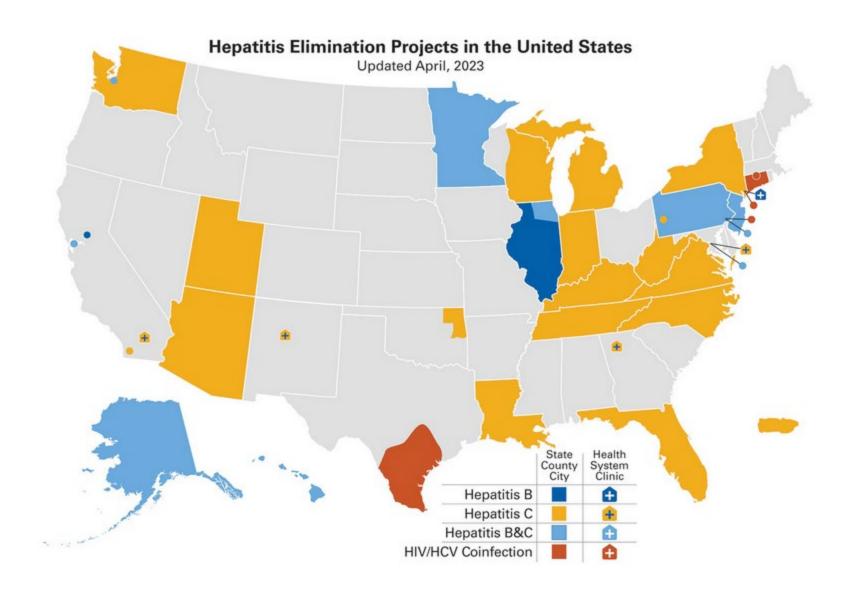
- Systematic Review of 109 studies estimated Maternal to Child Transmission Rate:
 - Mono-infected 5.6% (95% confidence interval [CI], 4.2%-7.8%)
 - Co-infected with HIV 10.8% (95% CI, 7.6%-15.2%)

(Benova et al., 2014)

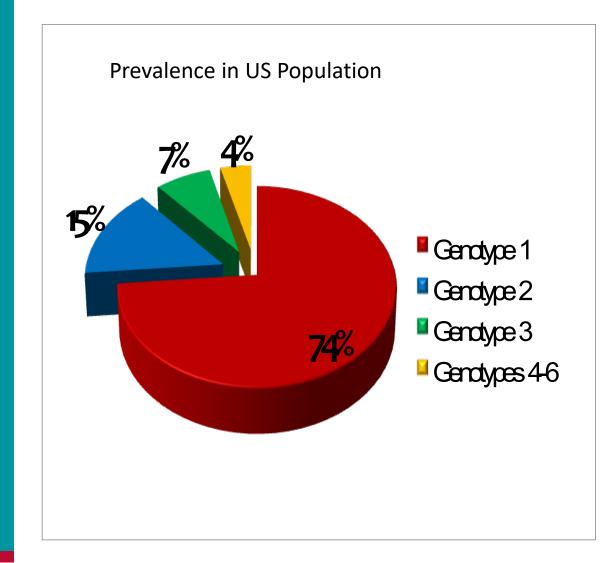
"Labour Pains"

- DAA therapy not approved in pregnant or lactating patients
- Left out of the treatment cascade, creating a gap in treatment access
- Strategies needed to keep women linked into care post-partum and treat when they stop breastfeeding
- Evidence indicates poor follow up after post-partum care
- Treatment gap serves as a gender imbalance and obstructs women from the benefit of cure


(Judd et al., 2021)


Challenges with Linkage to Care

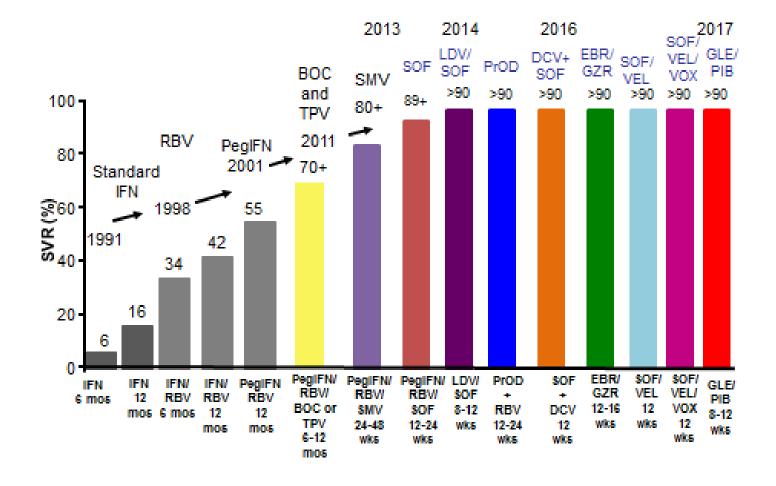
- Missing or incorrect contact info
- Pt not aware of diagnosis or referral
- Lack of transportation
- Housing insecurity/instability



https://www.hhs.gov/hepatitis/mapping-hepatitis-elimination-in-action/index.html

Hepatitis C Genotypes

- 6 major genotypes (1-6), most with subtypes
- GT 3 associated with higher mortality, steatohepatitis



The Evolution of Highly Effective Treatment

HCV Very Curable (95%+ cure rate)

Costs decreasing

Goals of HCV Therapy

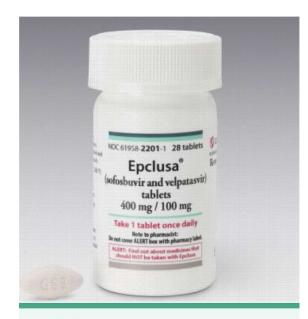
- Cure
 - Defined as sustained virologic response (SVR)
 - HCV RNA not detectable at least 12 weeks after completing HCV therapy
- Improvements in liver function
 - Improvements in fibrosis
 - Prevent decompensation
- Improvements in extrahepatic manifestations of HCV
- Prevent deaths due to liver disease complications
- Prevent liver cancer
- Reduce rates of liver cancer recurrence

Differences in Therapy

- Interferon Based
 - Injectable
 - Long duration of treatment
 - High side effect profile
 - Multiple laboratory abnormalities
 - Low cure rates

- Direct Acting Antivirals
 - Oral
 - Short durations
 - Minimal side effects
 - Minimal laboratory abnormalities
 - High cure rates

HCV Direct Acting Antivirals (DAAs) Generic Name	Brand Name	Comments
Glecaprevir/Pibrentasvir	Mavyret®	Pan-genotypic
Sofosbuvir/ Velpatasvir	Epclusa® agEpclusa®	Pan-genotypic
Ledipasvir/Sofosbuvir	Harvoni® agHarvoni®	Limited use, for genotype 1 and 4 only
Elbasvir/ Grazoprevir	Zepatier®	Limited use, for genotype 1 and 4 only
Sofosbuvir/ Velpatasvir/ Voxilaprevir	Vosevi®	Pan-genotypic
Other Therapies		
Ribavirin	Ribasphere®, RibaPak®, Copegus®, Rebetol®	


HBV Reactivation Risk in HCV

- FDA warning issued 2016 following 24 reported cases of HBV reactivation in patients treated with HCV DAAs
 - 2 deaths
 - 1 liver transplant
- Mechanism of reactivation unclear
 - HCV DAAs do not have immunosuppressive effects
- Current recommendations are to "evaluate patients for potential coinfection of HCV and HBV"
 - All patients should be tested for anti-HBc, HBsAg, anti-HBs

Sofosbuvir/ Velpatasvir (SOF/VEL)

Prescribing information, including BOXED WARNING ▶

BLISTER PACK

NDC: 72626-2701-1 **Tablet:** 400/100 mg

28 count

- Fixed-dose combination of sofosbuvir (NS5B inhibitor) and velpatasvir (NS5A inhibitor)
- Approved for chronic HCV genotypes 1, 2, 3, 4, 5, or 6 for 12 weeks
- Administration
 - 1 tablet once daily with or without food
 - Requires acidic environment for absorption

Who Can Be Treated with Sofosbuvir/ Velpatasvir?

- Patients without cirrhosis
- Patients with cirrhosis, including Child's class A, B or C cirrhosis

- Patients with renal insufficiency including patients on dialysis
- Approved for use in pediatric patients 3 years old and older

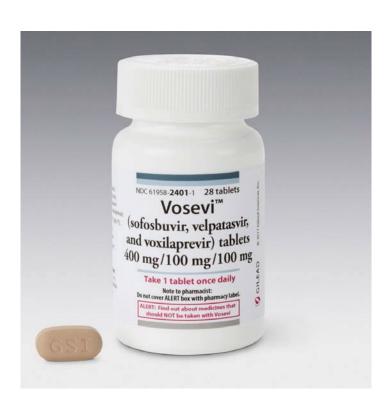
Glecaprevir/ Pibrentasvir (G/P)

- Combination of
 - Glecaprevir an NS3/4A protease inhibitor
 - Pibrentasvir an NS5A inhibitor

Dosage and administration:
 3 tablets once daily with food

Indicated for 8-12 weeks

Who Can Be Treated with Glecaprevir/Pibrentasvir?


- Patients without cirrhosis
- Patients with Child's class A cirrhosis (compensated cirrhosis)
- Do not use in patients with Child's Class B or Child's Class C cirrhosis (decompensated cirrhosis)
- Patients with renal insufficiency including patients on dialysis

Approved for use in children 3 yo and older

Sofosbuvir/ Velpatasvir/ Voxilaprevir

- Combination of
 - NS5B polymerase inhibitor (Sofosbuvir);
 - NS5A inhibitor (Velpatasvir);
 - NS3/4A protease inhibitor (Voxilaprevir)
- Administration
 - One tablet once daily with food
- Indicated for patients who were previously failed by DAA therapy

Who Can Be Treated with SOF/VEL/VOX?

- Patients without cirrhosis
- Patients with Child's class A cirrhosis (compensated cirrhosis)
- Patients with renal insufficiency including hemodialysis
- Not recommended in patients with Child's Class B or C cirrhosis

Ribavirin

- Limited use
 - Added to treatment in specific clinical scenarios
 - Patients with decompensated cirrhosis who can tolerate ribavirin
 - For patients who have specific HCV resistance concerns
- Well-known toxicity profile
 - Hemolytic anemia
 - Teratogenic
 - Pregnancy category X

Child-Pugh Classification of Cirrhosis for Drug Dosing

	1 Point	2 Points	3 Points	
Encephalopathy	None Moderate		Severe	
Ascites	Absent	Mild- Moderate	Severe/ Refractory	
Bilirubin (mg/dL)	< 2	2 - 3	> 3	
Albumin (g/dL)	> 3.5	2.8 - 3.5	< 2.8	
INR	<1.7	1.7-2.3	>2.3	
(PT Prolongation sec over control)	(0-4)	4-6	(>6)	

Note: Child Pugh Score is calculated only for patients with cirrhosis

Child-Pugh Interpretation of Hepatic Function in a Patient with Cirrhosis

C-P Score (Class)	Liver Function
5-6 (A)	Compensated
7-9 (B)	Decompensated
> 9 (C)	

Serious liver injury was reported in patients taking protease inhibitor therapy- do not use protease inhibitor based therapies in patients with Childs B or C cirrhosis

Treatment Options for Patients with Decompensated Cirrhosis

- Sofosbuvir/velpatasvir plus ribavirin x 12 weeks
 - Use of ribavirin requires frequent monitoring for hemolytic anemia

- Sofosbuvir/velpatasvir x 24 weeks
- All protease inhibitor therapy is contraindicated in decompensated cirrhosis due to reports of serious liver injury

What Predicts Treatment Success or Failure?

 Patients who are treatment naïve and non-cirrhotic have very high SVR rates

Underlying cirrhosis can decrease SVR

Medication adherence

Side Effect Profile of DAAs

- Prior treatments:
 - Interferon:
 - Flu-like symptoms: fever, headache, myalgia
 - Fatigue
 - Depression
 - Irritability
 - Insomnia
 - Nausea/ vomiting
 - Anorexia
 - Cognitive dysfunction
 - Ribavirin:
 - Rash
 - Nausea/vomiting
 - Headache

- DAAs:
 - Overall very well tolerated
 - Most commonly reported side effects:
 - Headache
 - Fatigue
 - Nausea
 - Diarrhea (reported with voxilaprevir)

Rapid Improvements in Inflammation

Week	Baseline	Week 1	Week 2	Week 4	Week 8	Week 12	Week 24
Actual Date	06/01/2017	06/08/2017	06/15/2017	06/29/2017	07/27/2017	08/24/2017	11/16/2017
WBC	5.9	6.8	6.1	4.8	5.3	5.6	7.0
ANC	3.5	2.8	3.4	2.2	2.6	3	3.4
HGB	14.1	13.9	13.3	14.2	13.8	14.3	14.2
нст	43.6	41.0	40.8	42.8	41.3	42.5	43.3
Platelets	322	363	308	253	273	276	315
Creatinine	.088	0.89	0.87	0.82	0.89	0.82	0.78
AST SGOT	74	14	16	13	13	15	18
ALT SGPT	102	42	15	11	13	12	16
Total Prot	6.7	6.6	7.1	6.7	6.4	7.1	7.2
Albumin	3.9	3.8	4.2	4.2	4.0	4.3	4.2
T. Bili	0.3	0.2	0.3	0.4	0.4	0.3	0.5
Dir Bili							
Alk Phos	53	42	43	40	47	44	56
HCV RNA	5910			ND			
HCV Log	3.772						

Other Main Drug Interaction Concerns for DAAs

- Statins:
 - Interactions vary by DAA and statin
 - Safest option may be to hold statin during HCV therapy
- Acid suppressive therapy:
 - Velpatasvir requires acidity for absorption
 - Recommend minimizing acid suppressive therapy in all patients undergoing HCV therapy
- Avoid amiodarone
 - Amiodarone with sofosbuvir and other DAA: Serious symptomatic bradycardia

Major Drug-Drug Interactions for all Direct Acting Antivirals

- Carbamazepine
- Oxcarbazepine
- Phenytoin
- Phenobarbital
- Rifampin
- Expected to \(\psi\) concentrations
- DO NOT USE WITH HCV THERAPY!

Interaction Charts

Site Updates

Interaction Query Service

About Us

Pharmacology Resources


Contact Us

HEP iChart app users - please update to the newest version to ensure up-to-date information

HEP Drug Interaction Checker

Access our comprehensive, user-friendly, free drug interaction charts. Providing clinically useful, reliable, up-to date, evidence-based information

www.hep-druginteractions.org

Also available as an app: hepichart

What About Medications in Patients with HCV?

Current Medications:

Medication name:	Dosage:	Frequency	Medication name:	Dosage:	Frequency

Current Method of Birth Control:	
If oral contraceptive, does it contain ethinyl estradiol? Yes No	

Avoid ethinyl estradiol with glecaprevir/pibrentasvir

Studies in pregnancy currently enrolling

"Despite the lack of a recommendation, treatment can be considered during pregnancy on an individual basis after a patient-physician discussion about the potential risks and benefits"

 Bottom line: Recommend birth control in all female patients of childbearing age/capacity

UNM Project ECHO

- HCV Community ECHO
 - Wednesday 3PM, case presentations & treatment recommendations
 - Didactic lectures
 - Using technology to amplify scarce resources
- Monthly provider training for HCV treatment
- Email <u>HCVEcho@salud.unm.edu</u> to register

Resources

- ECHO HCV guidelines- link provided in weekly email
 - Includes links to decision trees, flowsheets, resources, patient education material
- AASLD/IDSA HCV Treatment Guidelines:
 - Available at: http://www.hcvguidelines.org
- HCV Drug Interactions (University of Liverpool):
 - Available at: http://www.hep-druginteractions.org
- Educational material, clinical calculators, HCV therapy summaries (University of Washington)
 - Available at: http://www.hepatitisc.uw.edu

References

ACOG. (2021). Routine Hepatitis C Virus Screening in Pregnant Individuals. Retrieved from https://www.acog.org/clinical/clinical-guidance/practice-advisory/articles/2021/05/routine-hepatitis-c-virus-screening-in-pregnant-individuals

Applegate, T. L., Fajardo, E., & Sacks, J. A. (2018). Hepatitis C Virus Diagnosis and the Holy Grail. Infectious Disease Clinics of North America, 32(2), 425–445.

Benova, L., Mohamoud, Y. A., Calvert, C., & Abu-Raddad, L. J. (2014). Vertical transmission of hepatitis C virus: Systematic Review and meta-analysis. *Clinical Infectious Diseases*, 59(6), 765–773. https://doi.org/10.1093/cid/ciu447

Centers for Disease Control and Prevention. (2013). Testing for HCV Infection: An Update of Guidance for Clinicians and Laboratorians. Retrieved from https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6218a5.htm.

Judd, A., Collins, I. J., Pett, S., & Gibb, D. M. (2021). Labour pains: Eliminating HCV in women and children. *The Lancet Gastroenterology & Hepatology*, 6(3), 150–151. https://doi.org/10.1016/s2468-1253(20)30373-3

Krekulova, L., Honzák, R., & Riley, L. W. (2021). Viral hepatitis C pandemic: Challenges and threats to its elimination. *Journal of Viral Hepatitis*, 28(5), 694–698. https://doi.org/10.1111/jvh.13480

Kuncio, D. E., Newbern, E. C., Johnson, C. C., & Viner, K. M. (2016). Failure to test and identify perinatally infected children born to hepatitis C virus—infected women. *Clinical Infectious Diseases*, 62(8), 980–985. https://doi.org/10.1093/cid/ciw026

Ryerson, A. B., Schillie, S., Barker, L. K., Kupronis, B. A., & Wester, C. (2020). Vital signs: newly reported acute and chronic hepatitis C cases — United States, 2009–2018. MMWR. Morbidity and Mortality Weekly Report, 69(14), 399–404. https://doi.org/10.15585/mmwr.mm6914a2

Terrault N. A. (2019). Hepatitis C elimination: challenges with under-diagnosis and under-treatment. F1000Research, 8, F1000 Faculty Rev-54.

U.S. Preventative Services Task Force. (2021). Final Recommendation Statement: Hepatitis C Virus Infection in Adolescents and Adults: Screening. Retrieved from https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/hepatitis-c-screening.

White, D. L., Ratziu, V., & El-Serag, H. B. (2008). Hepatitis C infection and risk of diabetes: A systematic review and meta-analysis. *Journal of Hepatology*, 49(5), 831–844. https://doi.org/10.1016/j.jhep.2008.08.006

